
A COMBINATORIAL DESCRIPTION OF THE CENTRALIZER ALGEBRA

CONNECTED TO THE LINKS-GOULD INVARIANT

CRISTINA ANA-MARIA ANGHEL

Abstract. In this paper we study the tensor power of a 4-dimensional representation of the quantum
super-algebra Uq(sl(2|1), focusing on the ring of its algebra endomorphisms denoted by LGn. Its

dimension was conjectured by I. Marin and E. Wagner [4]. We will prove this conjecture, describing

the intertwiners spaces from a semi-simple decomposition as sets of certain paths in a lattice with
integer coordinates. In the second part, we are interested in the study of a unitary matrix basis for

this algebra, having in mind the algebra Birman-Murakami-Wenzl [2].

1. The quantum group Uq(sl(2|1))

2. The Links Gould invariant

3. Dimension of LGn

3.1. Combinatorial description for the intertwiners of V (0, α)⊗n.
As we have seen, LGn = EndUq(sl(2|1))(V (0, α)⊗n).

In [4], there is stated a conjecture about the dimension of this space:

Conjecture 1. (Marin-Wagner) dim(LGn) = (2n)!(2n+1)!
(n!(n+1)!)2 .

We will prove this conjecture, by describing in a combinatorial way the intertwiners that occur in
the tensor decomposition of V (0, α)⊗n.

Theorem 1. ([3], Lemma 1.3) If α, β ∈ C∗, n ∈ N so that V (0, α)⊗ V (n, β) is semi-simple then:
1) For n 6= 0:
V (0, α)⊗ V (n, β) = V (n, α+ β)⊕ V (n+ 1, α+ β)⊕ V (n− 1, α+ β + 1)⊕ V (n, α+ β + 1).
2) For n = 0: V (0, α)⊗ V (0, β) = V (0, α+ β)⊕ V (0, α+ β + 1)⊕ V (1, α+ β).

Let n ∈ N and α ∈ C so that V (0, α)⊗k is semi-simple, ∀k ∈ {2, ..., n}.
This certainly includes the cases where α ∈ C \Q.

Notation 1. V (0, α)⊗k = ⊕x,y∈N×N(Tk(x, y) ⊗ V (x, kα + y)) where Tk(x, y) is the intertwiner space
corresponding to the weight (x, kα+ y).

We will encode this in a graph in the plane with integer coordinates.

Definition 2. We say that D(n) is a diagram for V (0, α)⊗n if it is included in the lattice with integer
coordinates and weights natural numbers such that for each point (x, y) ∈ D(n), it has the associated
multiplicity tn(x, y) = dimTn(x, y). This encodes in the position (x, y) the multiplicity of the module
with highest weight that moves from the fundamental weight (0, n · α) with x from 0 and with y from
nα. In other words, we can think that the origin has coordinate (0, n · α).
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As we can see, we can deduce the tensor decomposition of V (0, α)⊗n by just reading the non-zero
multiplicities associated to points in D(n).
For example, for n = 2:

V (0, α)⊗ V (0, α) = V (0, 2α)⊕ V (0, 2α+ 1)⊕ V (1, 2α).

1 1

1

(1)

n = 3
V (0, α)⊗3 = (V (0, 2α)⊕ V (0, 2α+ 1)⊕ V (1, 2α))⊗ V (0, α) =
(V (0, 2α)⊗ V (0, α))⊕ (V (0, 2α+ 1)⊗ V (0, α))⊕ (V (1, 2α)⊗ V (0, α) =
(V (0, 3α)⊕ V (0, 3α+ 1)⊕ V (1, 3α))⊕ (V (0, 3α+ 1)⊕ V (0, 3α+ 2)⊕ V (1, 3α+ 1))⊕
(V (1, 3α)⊕ V (1, 3α+ 1)⊕ V (0, 3α+ 1)⊕ V (2, 3α))⇒

V (0, α)⊗3 = V (0, 3α)⊕ 3 · V (0, 3α+ 1)⊕ V (0, 3α+ 2)⊕ 2 · V (1, 3α)⊕ 2 · V (1, 3α+ 1)⊕ V (2, 3α)

So, D(3) is:

1 2 1

3 2

1(2)

n = 4
V (0, α)⊗4 = (V (0, α)⊗3 ⊗ V (0, α)) = ((V (0, 3α)⊗ V (0, α))⊕ 3 · (V (0, 3α+ 1)⊗ V (0, α))⊕
(V (0, 3α+ 2)⊗V (0, α))⊕2 · (V (1, 3α)⊗V (0, α))⊕2 · (V (1, 3α+ 1)⊗V (0, α))⊕ (V (2, 3α)⊗V (0, α)) =
= (V (0, 4α)⊕ V (0, 4α+ 1)⊕ V (1, 4α))⊕ (3V (0, 4α+ 1)⊕ 3V (0, 4α+ 2)⊕ 3V (1, 4α+ 1))⊕
(V (0, 4α+ 2)⊕ V (0, 4α+ 3)⊕ V (1, 4α+ 2))⊕ (2V (1, 4α)⊕ 2V (1, 4α+ 1)⊕ 2V (0, 4α+ 1)⊕ 2V (2, 4α))
(2V (1, 4α+ 1)⊕ 2V (1, 4α+ 2)⊕ 2V (0, 4α+ 2)⊕ 2V (2, 4α+ 1))⊕ (V (2, 4α)⊕ V (2, 4α+ 1)⊕ V (1, 4α+
1)⊕ V (3, 4α))⇒

V (0, α)⊗4 = V (0, 4α)⊕6·V (0, 4α+1)⊕6·V (0, 4α+2)⊕V (0, 4α+3)⊕3·V (1, 4α)⊕8·V (1, 4α+1)⊕3·V (1, 4α+2)⊕

3 · V (2, 4α)⊕ 3 · V (2, 4α+ 1)⊕ V (3, 4α)

We obtain D(4) :

1 3 3 1

6 8 3

6 3

1

(3)
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In the sequel, we will describe that the diagrams D(n), can be constructed recursively, more precisely,
if we know D(n), then by applying some moves we will be able to obtain D(n+ 1).
Let us start with V (m,β). We will encode the decomposition of V (m,β)⊗V (0, α) in a lattice. Let us
think that initially, V (m,β) is encoded by diagram D which has as origin (m,β) and the corresponding
multiplicity 1.

Definition 3. a) From the Theorem 1, we have:
V (0, α)⊗ V (m,β) = V (m,α+ β)⊕ V (m+ 1, α+ β)⊕ V (m− 1, α+ β + 1)⊕ V (m,α+ β + 1).
We call the effect of tensoring V (m,β) with V (0, α) a blow up of type (m,β) and B(m,β) the new
corresponding diagram.

(m,α+ β)

(4)

b) V (0, α)⊗ V (0, β) = V (0, α+ β)⊕ V (0, α+ β + 1)⊕ V (1, α+ β).
We call the effect of tensoring V (0, β) with V (0, α) a blow up of type (0, β) and B(0, β) the new
corresponding diagram.

(0, α+ β)

(5)

Lemma 4. The diagram D(n+ 1) can be obtained from D(n), by blowing up each point (x, y) ∈ D(n)
with B(x, y) for tn(x, y) times and add in each vertex all the new multiplicities.

Proof. Suppose we have D(n). This means that:

V (0, α)⊗n = ⊕x,y∈N×N(tn(x, y) · V (x, nα+ y))

In order to deduce the multiplicities that occur in D(n+ 1), we have:

V (0, α)⊗n+1 = ⊕x,y∈N×N(tn(x, y) · (V (x, nα+ y)⊗ V (0, α))) (∗)
On the other hand, we are interested in the multiplicities tn+1, where:

V (0, α)⊗n+1 = ⊕x,y∈N×N(tn+1(x, y) · V (x, n+ 1α+ y))

In the previous description (∗), (V (x, nα+ y)⊗ V (0, α)) will add a blow up of center
(x + 0, (nα + y) + α) = (x, (n + 1)α + y), which is encoded in D(n + 1), as a blow-up B(x, y) with
center (x, y). For each point (x, y), we’ll have to do the bow-up tn(x, y) times.
In this way, we obtain tn+1(x, y). �

Up to this point, we saw how to construct the recursive relation with step one D(n) → D(n + 1).
However, this is still at a theoretical point of view. We know the diagram D(2), and in the following
part, we will show how each tn(x, y) can be describes in a natural way using paths in the plane.
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Remark 5. 1)In D(n + 1), for each point (x, y), the total multiplicity if obtained by adding all the
multiplicities of the points from D(n), which can arrive to (x, y) using one of the following moves:
M1) stay move (x, y)→ (x, y)
M2) −→ (x, y)→ (x+ 1, y)
M3) ↑ (x, y)→ (x, y + 1)
M4) ↖ (x, y)→ (x− 1, y + 1) if x > 0.
Here, the reason for the fact that M4 can be done just if x > 0 is that that occurs in the blow-up B(x, y)
if and only if x > 0.
2)If we start from D(n − 1), we can obtain D(n + 1), by counting all the paths in the integer lattice
(with the corresponding multiplicities as in D(n− 1).
In this way: tn+1(x, y) is the sum of all paths of length 2 starting from points in D(n− 1) and ending
in (x, y) with the moves M1,M2,M3 or M4.
3)Iterating this argument by Induction and using the fact that D(1) is:

1
(6)

we obtain the following combinatorial description for the intertwiners spaces:

Theorem 6. In D(n), for each point (x, y) ∈ Z× Z, we have:
tn(x, y) =number of paths from (0,0) to (x,y) with (n-1) steps and moves M1, M2, M3 or M4 with the
condition that they do not have any point with a negative coordinate on the x-axis.

Remark 7. In D(n), just the points that are in the standard simplex of lenght n − 1: ∆n−1 have
non-zero weights.

Notation 2. Pn(x, y) := paths from (0, 0) to (x, y) with (n− 1) steps and moves M1, M2, M3 or M4
with the condition that they do not have any point with a negative coordinate on the x-axis

Remark 8.

V (0, α)⊗n = ⊕x,y∈N×N(tn(x, y)V (x, nα+ y))

where tn(x, y) is the cardinality of the intertwiner space corresponding to the weight (x, k · α+ y).

From [3], for typical (n, α), V (n, α) is simple and MorphUq(sl(2|1))(V (n, α), (m,β)) ' δ(m,β)
(n,α) C · Id.

In our case, all V (x, nα+ y) are typical and we have:
EndUq(sl(2|1))(V (0, α)⊗n) ' ⊕EndUq(sl(2|1))(tn(x, y)V (x, nα+ y))) ' ⊕M(tn(x, y),C).

Corollary 9. dimLGn =
∑
x,y∈N×N,x+y≤n−1 tn(x, y)2.

3.2. Computation for dim LGn.
In [4], it is mentioned that F.Chapoton remarked that conjectured dimension of LGn+1 coincides

with a combinatorial quantity:

Theorem 10. [1], [5], (2n)!(2n+1)!
(n!(n+1)!)2 =number of pairs of paths in the (n+ 1)× (n+ 1) square which go

↑ or →, between (0, 1)→ (n, n+ 1) and (1, 0)→ (n+ 1, n) which do not intersect.

We will denote by Cn+1 this set of pairs of paths. We will prove the Conjecture using the previous
description for dim LGn+1 and this result for the conjectured number.

Since in dim LGn+1, there are counted all tn+1(x, y), (x, y) ∈ ∆n
Z, we will describe Cn+1 as a sum

indexed by the same set. Having a pair of paths in the square, we can remember where those ”cut the
diagonal”, and use that as an indexing set.
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(7)

Definition 11. For (a, b) ∈ N× N with a, b ≤ n+ 1 and a > b, denote by
1)Cn+1(a, b) :=pairs of paths in Cn+1 that cut the diagonal of the square precisely in (n+1−a, a), (n+
1− b, b).
2)C∆

n+1(a, b) :=pairs of disjoint paths in ∆n+1 between (1, 0)→ (n+ 1− a, a), (0, 1)→ (n+ 1− b, b).

Remark 12.
1) Cn+1 = ∪a,b≤n+1,a>bCn+1(a, b)

2) Cn+1(a, b) ' C∆
n+1(a, b)× C∆

n+1(a, b)

by just cutting a path from Cn+1(a, b) at the diagonal, and obtaining two paths in C∆
n+1(a, b).

Proposition 13. From the previous remarks and definitions we obtain that:

Cn+1 = ∪(a,b≤n+1),a>b(C
∆
n+1(a, b)× C∆

n+1(a, b))

| Cn+1 |=
∑

a,b≤n+1,a>b

| C∆
n+1(a, b) |2

Notation 3. For (a, b) ∈ N× N with a, b ≤ n and a ≥ b, denote by
D∆

n(a, b) :=pairs of paths in ∆n between (0, 0)→ (n+1−a, a), (0, 0)→ (n+1−b, b) that can intersect
each other just in integer points, but they do not cross each other.

Proposition 14. C∆
n+1(a, b) ' D∆

n(a, b− 1)

Proof. Let C,D ∈ C∆
n+1(a, b) pair of paths.

By modifying C → C + (−1, 1), we will obtain C + (−1, 1), D ∈ D∆
n(a, b− 1)

(where here the simplex ∆n is seen as bounded by (0, 1), (n, 1), (n+ 1, 0)). After that it can be easily
shown that this function is a bijection. �

(8)

n

(9)
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Proposition 15. From the last bijection, we can deduce that we can count Cn using pairs of paths
in ∆n:

| Cn+1 |=
∑

a,b≤n;a≥b

| D∆
n(a, b) |2

Remark 16. For any C1 = ((C1)kx, (C1)ky), C2 = ((C2)kx, (C2)ky) ∈ D∆
n(a, b) the condition that they

do not cross each other can be read as:
for any step k:(C1)ky ≤ (C2)ky.

Now, we arrive at the last part, and we will show a correspondence between tn(x, y) and D∆
n(a, b).

Lemma 17. We have the following correspondence for any (x0, y0) ∈ ∆n:
Pn(x0, y0) ' D∆

n(x0 + y0, y0)

Proof. Let C1, C2 ∈ D∆
n(x+ y, y). This pair of paths can be encoded in a sequence of moves of four

types.
For (x1, y1) ∈ C1, (x2, y2) ∈ C2 the k’th step, in order to pass to the k+ 1 step we have four situations.
Movements: ((x1, y1), (x2, y2)) and we know y2 ≥ y1

((0, 1), (0, 1))
((1, 0), (1, 0))
((1, 0), (0, 1))
((0, 1), (1, 0))
On the other hand, for any path C ∈ tn(x, y), this can be encoded also, by specifying which move we
do from the kth step to the (k + 1)st:
Movements: (x, y) and we know x ≥ 0
(0, 0)
(0, 1)
(1, 0)
(−1, 1)
Now, we want to define a function f : D∆

n(x0 + y0, y0)→ tn(x0, y0).
Let C1, C2 ∈ D∆

n(x + y, y). We want to sent each pair of points (x1, y1) ∈ C1, (x2, y2) ∈ C2 in
f((x1, y1), (x2, y2) such that it
satisfies the restrictions from tn(x0, y0). Since we know the condition y2 ≥ y1, it would be natural to
send f((x1, y1), (x2, y2))1 = y2 − y1

which would ensure us the necessary condition.
Consider f((x1, y1), (x2, y2)) := (y2 − y1, x2).
Then f((0, 0), (0, 0)) = (0, 0), so it preserves the initial points. Now we can verify that this transfor-
mation, preserves correspondingly the possible moves in the two cases in the following way:
(x1, y1), (x2, y2) −→ (y2 − y1, x2)
(0, 1), (0, 1) (0, 0)
(1, 0), (1, 0) (0, 1)
(1, 0), (0, 1) (1, 0)
(0, 1), (1, 0) (−1, 1)
This concludes that f is a well-defined bijection.

�

As a conclusion, from Corollary 9, Theorem 10, Lemma 17 we obtain the Wagner-Marin Conjecture:

Theorem 18.

dim(LGn) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2
.

4. Describing an unitary matrix basis for LGn

In [2], C. Blanchet and A. Beliakova described a basis for the algebra Birman-Murakami-Wenzl by
idempotents elements. We will try to study elements from a basis of LGn using similar methods.
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