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Abstract

Abstract

I The aim of my talk is to present the twisted Alexander
polynomials and their applications to the topology of
3-manifolds.

I In the first part, after a short review of the Alexander and
Jones invariants, I will present the twisted polynomials for
knots and 3-manifolds after [Kirk-Livingston, Top. ’99],
[Wada, Top. ’94] and [Lin, Columbia preprint ’90].

I The second part is devoted to applications of the twisted
polynomials to knots slicing, concordance and fibering mainly
after [Kirk-Livingston, Top. ’99] .

I In the third part, I’ll present after
[Friedl-Vidussi, Ann. of Math. ’11] a criterion of fibering for
3-manifolds and also a nice corollary which relates fibered
3-manifolds with symplectic 4-manifolds.
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Knots, links and (almost) classical invariants

Knots and links

I A knot K is an embedding of S1 in S3. A link L is a finite
union of disjoint knots.

I There are two types of equivalence relations on links:
1)weak equivalence ∼: L1 ∼ L2 if there exists a
homeomorphism of S3 which takes one in the other.
2)equivalence ≈: L1 ≈ L2 if they are ambient isotopic or
equivalently there exists a homeomorphism of S3, which
preserves the orientation and takes L1 into L2.

I In fact, two weakly equivalent knots are either equivalent or
one of them equivalent with the mirror of the other.
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Knots, links and (almost) classical invariants

Knots and links

For example the two trefoils are weak-equivalent, one is the mirror
of the other, but not equivalent:

The aim of knot theory is to classify knots up to (weakly)
equivalence. As usual in algebraic topology, one try to introduce
invariants which can distinguish different classes of knots. For
example a result of Gordon and Luecke states that the homeo type
of the complement is a complete invariant for knots with respect
to weak-equivalence (for links this is false).
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Knots, links and (almost) classical invariants

Knots and links

I As far as it is difficult to decide when two knot complements
are homeomorphic one associate weaker, but easier to
compute invariants along the following recipe:

Homeo type of (S3\K )→ π1(S3\K )→ AK → ∆K ,

where AK is the Alexander module and ∆K is the Alexander
polynomial.

I For a knot, ∆K ∈ Z[t, t−1] is a polynomial in the Laurent
ring, defined up to a multiplicative unit. In fact, it depends
ONLY on π/π′′ so it CANNOT detect chirality (i.e. a knot
from its mirror).
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Knots, links and (almost) classical invariants

The Jones polynomial

I A powerful invariant discovered in the ′90s is the Jones
polynomial VL defined for oriented links, introduced using the
theory of operator algebras.

I It is also a Laurent polynomial but has the great advantage
that sometimes it CAN detect chirality.

I For example, the two trefoils have the same Alexander
polynomial, but are distinguished by the Jones’s:

∆right−trefoil(t) = ∆left−trefoil(t) = t2 − t + 1

Vright−trefoil(t) = t + t3 − t4

Vleft−trefoil(t) = t−1 + t−3 − t−4.



Twisted polynomials for knots and 3-manifolds with applications to concordance, slicing and fibering

The twisted Alexander polynomials

Homology with local coefficients

I Let X a space which admits an universal cover X̃ and
π := π1(X ).

I Let A an abelian group and ρ : π → Aut(A) a representation
which endow A with a Z[π]-module structure.

I We shall define the homology of X with twisted coefficients in
A.

I Let C∗(X̃ )-the simplicial or cellular chain complex of X̃ . Since
π acts on X̃ by covering transformations, each Ci is a Z[π]
module. Denote C∗(X ,A) = C∗(X̃ )⊗Z[π] A.

I Let H∗(X ,Aρ)-its homology. It is called the homology with
local coefficients in A.
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The twisted Alexander polynomials

Examples

I For A-the trivial π-module we have: H∗(X ,Aρ) = H∗(X ,A).

I For A = Z[π] we have: H∗(X ,Z[π]ρ) = H∗(X̃ ;Z).

I For M an abelian group with trivial π-action and
A = Z[π]⊗Z M we have: H∗(X ,Aρ) = H∗(X̃ ,M).

I (Shapiro’s Lemma) If H / π is a normal subgroup and
A = Z[π/H] then: H∗(X ,Aρ) = H∗(XH ,Z), where XH is the
covering which corresponds to H.

I As a conclusion of the above examples, the twisted homology
encodes various homologies of ALL coverings of X .
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The twisted Alexander polynomials

Twisted Alexander modules and polynomials

I Twisted Alexander polynomials were introduced, as in the
classical case, by 3 approaches:
-using Seifert surfaces by Lin in 1990
-using Fox calculus by Wada in 1994
-using homology with twisted coefficients by Kirk-Livingston
in 1999.

I The last method starts with the following input data:
- a surjection ε : π → Z with the associated cyclic covering
X∞
- a field F and an F -vector space V
- a representation ρ : π → GLn(V ) and the induced
ρ′ : π′ → GLn(V ).
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The twisted Alexander polynomials

Twisted Alexander modules and polynomials

I The twisted homology construction is applied to X∞ and ρ′,
producing homology groups H∗(X∞,Vρ′) with F [Z]-module
structure. They are called the twisted Alexander modules.

I As F [Z] is a PID, one can consider the order of the torsion
part of Hi (X∞,Vρ′) denoted by
∆i := ∆i (X , ε, ρ,V ) ∈ F [t, t−1] called the i th twisted
Alexander polynomial.

I The ∆′i s are related with Wada’s twisted polynomial W by
the following formula:

∆1 = W ·∆0.
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The twisted Alexander polynomials

The Kinoshita-Terasaka and Conway knots

In the following, we have from Wada, an example of two knots,
Kinoshita-Terasaka and Conway, with the same Alexander, Jones
and HOMFLY polynomials but detected by the set of all twisted
Alexander polynomials which corresponds to parabolic (i.e.the
meridian goes to a trace 2 matrix) representations
ρ : π → SL2(F7):
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The twisted Alexander polynomials

The 1040 and 10103 knots

Moreover, from [Friedl-Vidussi, Bull. Lond. Math. Soc. ’07], the
following two knots are detected by twisted polynomials even if
they have, beside the same Alexander, Jones and HOMFLY, also
the same Khovanov and knot Floer homology:
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Applications

Slicing and concordance

Applications to slicing
I A knot K ∈ S3 is slice if it bounds a smooth 2-disk in the

4-ball B4. An interesting problem is the construction of
invariants that detects the sliceness of a knot. For example, a
classical result, due to Fox and Milnor, asserts that for a slice
knot, the Alexander polynomial has the form f (t)f (t−1). The
trefoil is therefore NOT slice.

I In [Kirk-Livingston, Top. ’99] the twisted Alexander
polynomials are used to produce a powerful obstruction to
sliceness. Let’s consider the following data:
- an oriented knot K ∈ S3
- for m = pr a prime power, Bm is the m-cyclic branched
covering of S3 along K and Em the m-cyclic covering of the
complement S3 \ K
- ε : H1(Em,Z)→ H1(S3 \ K ,Z) = Z (here is hidden the
orientation of K )
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Applications

Slicing and concordance

Applications to slicing
- for d = qs a prime power, a character χ : H1(Bm,Z)→ Zd

As Zd acts on Q(ξd) by ξd := e
2πi
d -multiplication, the last input is

the representation
- ρχ : π1(Em)→ H1(Em,Z)→ H1(Bm,Z)→ Zd → GL1(Q(ξd)).
The main obstruction to sliceness from [Kirk-Livingston, Top. ’99]
is:

Theorem

If K is a slice oriented knot and m = pr , d = qs are odd prime
powers, then there is a sub-group M ⊂ H1(Bm,Z) such that:
1) | M |2=| H1(Bm,Z) |
2) for all χ : H1(Bm,Z)→ Zd vanishing on M, the twisted
polynomial ∆1(Em, ε, ρχ,Q(ξd)) ∈ Q(ξd)[t, t−1] has the form{

atnf (t)f̄ (t−1) if χ is trivial
atnf (t)f̄ (t−1)(t − 1) if χ is nontrivial
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Applications

Slicing and concordance

Applications to slicing

I A first consequence cf.
[Herald, C., Kirk, P., Livingston, C, Math. Z. ’10] of the
above theorem concern the prime knots with at most 12
crossings.

I Among them only 175 were not ruled out by known invariants,
and for several years the sliceness of 18 of these remain
unknown.

I The above theorem settle 16 of these. From the last two, the
12a990 is proved to be slice, while the 12a631 is still unknown.

I Other applications are obtained in [Kirk, Livingston, Top. ’99]
using the relation between sliceness and concordance. Denote
by m the mirroring operation, the ∗ means changing the knot
orientation and ] is the connected sum between oriented
knots.
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Applications

Slicing and concordance

Applications to concordance

Definition

Two oriented knots K1 and K2 are concordant if one of the
following (equivalent) conditions is verified:
1) there is an embedded cobordism S1 × [0, 1] ∈ S3 × [0, 1]
between K1 and m(K2)∗.
2) K1]m(K2)∗ is slice.

Kirk-Livingston used twisted polynomials in convenient
representations to prove that the 817 knot below, is chiral and not
invertible.

Moreover, the above theorem applied to 817]m(817) show that 817
is not even concordant with its inverse.
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Applications

Knot fibering

Applications to knot fibering

Definition

A knot K ⊂ S3 is fibered if its complement is a fibration over S1.

For example, the trefoil and figure eight knots are fibered. A
classical result is the following:

Theorem

For a fibered knot K, the Alexander polynomial ∆K (t) is monic of
degree 2g(K ).

The following theorem from
[Kitano-Morifuji, Ann. Scuola Norm. Sup. Pisa ’05] is a twisted
version:
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Applications

Knot fibering

Applications to knot fibering

Theorem

For a knot K , a field F and a nonabelian representation
π1(S3 \ K )→ SL(2,F ), the Wada twisted polynomial (which by
definition is a rational function) is a polynomial. Moreover, if K is
fibered of genus g, then W (t) is monic of degree 4g − 2.

For example, the knot below, has a nonabelian SL(2,F7)
representation. The Alexander and Wada polynomials are:
∆(t) = t4 − t3 + t2 − t + 1 W (t) = t4 + 6t3 + 6t2 + 6t + 1. If it
were fibered the genus would be 2 from ∆ and 3 from W . So it is
not fibered.



Twisted polynomials for knots and 3-manifolds with applications to concordance, slicing and fibering

Applications

Hyperbolic torsion

Applications to hyperbolic torsion

I In the hyperbolic setting, there are at least two directions
where the ideas of twisted polynomials were applied.

I In [Dubois-Yamaguchi, ’09], for hyperbolic 3-manifolds, the
authors gives a derivative formula for the hyperbolic
Reidemeister torsion, in terms of the twisted Alexander
polynomials.

I For hyperbolic knots, (i.e. with hyperbolic complement) in
[Dunfield-Friedl-Jackson, ’11], using the twisted polynomials,
a new invariant TK - the hyperbolic torsion polynomial - is
defined. In particular, the following theorem is proved:

Theorem

Tm(K) = T̄K for any hyperbolic knot K , and so if K is amphichiral,
TK (t) is a real Laurent polynomial.
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Applications

Hyperbolic torsion

Applications to hyperbolic torsion

I Another interesting result from the last paper is concerned
with knots with at most 15 crossings.

I There are 313.231 such prime knots and except 22, all are
hyperbolic.

I For the hyperbolic ones, TK (t) is a powerful invariant, fully
detecting the chirality.

I Morover, in many cases, TK (t) gives sharp informations on
the genus and fibering.
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Fibered 3-manifolds and symplectic 4-manifolds

Fibered 3-manifolds

The main result of [Friedl-Vidussi, Ann. of Math. ’11] is a
description of fibered 3-manifolds in terms of twisted polynomials.

I A manifold pair (N, ϕ) is composed by a connected orientable
3-manifold N with toroidal or empty boundary and a
nontrivial morphism ϕ : π1(N)→ Z.

I A manifold pair FIBERS over S1 if there is a fibration
p : N → S1 with the induced map π1(N)→ π1(S1) = Z being
ϕ.

I For a manifold pair, the Thurston norm is
‖ ϕ ‖= min{χ−(S) | S surface Poincare dual to ϕ}, where
χ−(S) = Σmax{−χ(Si ), 0} for S = S1 ∪ ... ∪ Sk .
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Fibered 3-manifolds and symplectic 4-manifolds

Fibered 3-manifolds

I For α : π1(N)→ G a morphism ONTO a finite group, and the
induced π1(N)→ G → Aut(Z[G ]) we denote:
- ∆α

N,ϕ ∈ Z[t, t−1] the twisted Alexander polynomial,
- ϕα the restriction of ϕ to the kernel of α,
- div ϕα = max{n ∈ N | ϕα = n · ψ}.

I With the above notations the Friedl-Vidussi main result is:

Theorem (Fundamental theorem)

For a manifold pair (N, ϕ) the following are equivalent:
1. (N, ϕ) is fibered
2. For any morphism α : π1(N)→ G onto a finite group G , ∆α

N,ϕ

is monic of degree | G | · ‖ ϕ ‖ +(1 + b3(N)) · div ϕα.
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Fibered 3-manifolds
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Fibered 3-manifolds and symplectic 4-manifolds

Fibered 3-manifolds and symplectic 4-manifolds

From the above theorem, they prove also the:

I Theorem

For N a closed 3 manifold, the following are equivalent:
1. S1 × N is symplectic
2. N is fibered.

I For this second theorem, the 2⇒ 1 part, was known by
Thurston. The 1⇒ 2 direction consist in the proof that using
the symplectic structure, one can construct a class
ϕ ∈ H1(N,Z) = Hom(π1(N),Z) which satisfy the conditions
in the Fundamental theorem. Along the way, deep results of
Taubes, Meng and Donaldson are used.
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Fibered 3-manifolds and symplectic 4-manifolds

The fundamental theorem

I The fundamental theorem appeared first on arxiv in ′08 and
after that in Annals in ′11.
The 1⇒ 2 part, was proved in various levels of generality by
Cha, Goda, Kitano, Morifuji and finally Friedl-Vidussi. The
main tools are a Mayer-Vietoris sequence and the calculus of
the twisted polynomials by a Seifert-type method.
For the 2⇒ 1 part, the following main steps are described by
Friedl-Vidussi in an expository paper from arxiv in ′10.

I STEP A is essentially the following theorem:

Theorem (A)

There is a connected surface S minimizing the Thurston norm ,
and the pair pair (N, ϕ) fibers over S1 iff i± : π1(S)→ π1(N \ S)
are isomorphisms.



Twisted polynomials for knots and 3-manifolds with applications to concordance, slicing and fibering

Fibered 3-manifolds and symplectic 4-manifolds

The fundamental theorem

I The fundamental theorem appeared first on arxiv in ′08 and
after that in Annals in ′11.
The 1⇒ 2 part, was proved in various levels of generality by
Cha, Goda, Kitano, Morifuji and finally Friedl-Vidussi. The
main tools are a Mayer-Vietoris sequence and the calculus of
the twisted polynomials by a Seifert-type method.
For the 2⇒ 1 part, the following main steps are described by
Friedl-Vidussi in an expository paper from arxiv in ′10.

I STEP A is essentially the following theorem:

Theorem (A)

There is a connected surface S minimizing the Thurston norm ,
and the pair pair (N, ϕ) fibers over S1 iff i± : π1(S)→ π1(N \ S)
are isomorphisms.



Twisted polynomials for knots and 3-manifolds with applications to concordance, slicing and fibering

Fibered 3-manifolds and symplectic 4-manifolds

The fundamental theorem

I STEP B In view of the STEP A the idea is to interpret the
information on the twisted polynomials in terms of the i±.
The main result here is:

I Theorem (B)

If α : π1(N)→ G is a morphism ONTO a finite group such that
∆α

N,ϕ 6= 0 and it verify the hypothesis of the fundamental theorem,
then i± : H1(S ,Z[G ])→ H1(N \ S ,Z[G ]) are isomorphisms.

I In the untwisted case, theorem B says that if the Alexander
polynomial verifies the hypothesis from the fundamental
theorem, then i± : H1(S ,Z)→ H1(N \ S ,Z) are isomorphisms,
or in other words that i± : π1(S ,Z)→ π1(N \ S ,Z) are
isomorphisms at ”abelian level”.
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The fundamental theorem

I STEP C In view of the above remark, one can say that this
step is devoted to the ”finite solvable level”:

Theorem (C)

If for any α : π1(N)→ G a morphism ONTO a finite solvable
group, ∆α

N,ϕ verify the hypothesis of the fundamental theorem,
then for any finite solvable group G , the induced maps
i± : Hom(π1(N \ S),G )→ Hom(π1(S),G ) are bijections.

I To go further, we need the following:

Definition

If P is a property of groups (finite, solvable, etc), we say that a
group π is residually P if for any nontrivial x ∈ π there is a group
G with P and a morphism α : π → G such that α(x) is nontrivial.
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Fibered 3-manifolds and symplectic 4-manifolds

The fundamental theorem
I For example, surface groups are residually finite solvable and

3-manifolds groups are residually finite, but NOT residually
finite solvable.

I STEP D The main result here is:

Theorem (D)

If the fundamental theorem holds for all 3-manifolds N with π1(N)
residually finite solvable, then it holds for all 3-manifolds.

I STEP E This last step proves the following:

Theorem (E)

If π1(N \ S) is residually finite solvable, and for any finite solvable
G , the maps i± : Hom(π1(N \ S),G )→ Hom(π1(S),G ) are
bijections, then N \ S is a product.
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Fibered 3-manifolds and symplectic 4-manifolds

The fundamental theorem

I Putting all together, by theorem D one can suppose π1
residually finite solvable.

I In this case, by theorem C, are verified the hypothesis of
theorem E.

I Hence, by theorem E, S and N \ S are homotopic equivalent.

I Therefore, by theorem A, N is fibred.
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